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Abstract—On-Device Machine Learning (ODML) is a rapidly
emerging paradigm, particularly suited for edge computing
applications such as mobile computing, robotics, cyber-physical
systems, etc. While ODML enables intelligent local processing,
it introduces significant data confidentiality risks. When an
application sends its data to an ODML model, there is potential
for the model to eavesdrop on or leak this data to unauthorized
third parties, thereby compromising sensitive information. To
address this security concern, we propose a novel secure ODML
architecture called Split Inference, designed to safeguard data
confidentiality. Split Inference prevents compromised models
from accessing or leaking application data by utilizing multi-
enclave Trusted Execution Environment (TEE) technology. The
architecture splits the model into three groups of layers: input,
middle, and output. Each of the input and output group is isolated
within its own respective TEE enclave, ensuring that the model
input and output are protected against direct access. We also
showed that it is challenging for the attacker to restore the
model input and output based on the data in the unprotected
middle group. As a result, application’s data is protected at all
stages of inference. We have implemented a prototype system
for the MobileNet V1 model on a RISC-V-based multi-enclave
TEE framework, Keystone. Experimental results demonstrated
that Split Inference incurs an inference overhead ranging from
71% to 430%, outperforming the state-of-the-art solutions. We
also discussed the application of the Split Inference on a wider
spectrum of on-device models and hardware platforms.

Index Terms—Trusted Execution Environment, RISC-V, Mo-
bileNet, Data Confidentiality, On-Device Machine Learning,
Model Inference, Deep Learning, AI Security, Split Learning

I. INTRODUCTION

On-Device Machine Learning (ODML) is an emerging
paradigm that is widely used in various edge computing set-
tings, such as mobile devices, autonomous systems, robotics,
cyber-physical systems, etc. In ODML, pre-trained machine
learning (ML) models are deployed to an edge device to
provide model inference services (MISes) for the applications
(APPs). To provide intelligent processing, an APP on the
device sends data to MISes as inference requests and receives
inference response. Compared with the traditional on-cloud
machine learning paradigm that requests the APP to receive
inference response from the cloud, ODML avoids response
latency, protects data secrecy, and supports offline intelligent
processing.

While ODML is increasingly adopted, security concerns
raise simultaneously. A malicious or vulnerable model could

pose various threats that jeopardize the security of intelligent
information processing [28]. In particular, a curious model
could eavesdrop its input and output data exchanged with the
APP and therefore compromise the data confidentiality of the
APP.

In this paper, we aim to protect the input and output con-
fidentiality of the ODML model using multi-enclave Trusted
Execution Environment (TEE). The challenge is to use limited
TEE resources to achieve high confidentiality and maintain
low model inference delay. We propose Split Inference, which
splits a model into three groups of layers, namely input group,
middle group, and output group, and has each of the input
and output group protected by a respective isolated enclave,
namely Input Enclave and Output Enclave, respectively. By
leveraging Remote Attestation of TEE, we ensure the input and
output groups are free from confidentiality breach, therefore
the model input and output are safely processed. To reduce
performance overhead and TEE resource consumption, the
middle group is not protected by an enclave and processed in
plaintext. However, our analysis showed that Split Inference
can effectively raised the bar for the attacker to restore the
model input and output from the data observed in the middle
group and can efficiently prevent the attacks by combining
existing defense methods against data reconstruction and la-
bel inference attacks. As a result, the confidentiality of the
model input and output will be protected. Different from most
existing works utilizing single enclave [19], our work utilizes
multi-enclave TEE to ensure separate isolation of the input
and the output group. Even though all groups co-locate on
one device, multi-enclave TEE ensures each group can run
securely if other groups are compromised, therefore having
an enhanced security guarantee. Additionally, multi-enclave
TEE enables multiple ML models colocate in one device,
supporting a broader spectrum of applications.

We implemented a prototype of the Split Inference frame-
work for the MobileNet V1 [11] model on Keystone [14],
a RISC-V based Multi-Enclave TEE framework. Our ex-
periments showed that Split Inference incurs 71% to 430%
of inference overhead. The state-of-the-art solutions in this
direction [19], [26], [32], which protect minority but critical
layers of the model using the TEE enclave and protect ma-
jority remaining layers through linear transformations, incur



at best 142% to 577% of overhead (See Table 6 of [32]).
By comparison, Split Inference outperforms existing work in
performance.

Our contributions are as follows:
• By leveraging multi-enclave TEE, we proposed a secure

on-device machine learning architecture, Split Inference,
which protects the confidentiality of the model input
and output against curious model. To the best of our
knowledge, this paper is the first work applying split
learning into on-device machine learning setting using
TEE technology.

• To support Split Inference, we designed a communication
protocol to ensure secure data communication among the
APP and the enclaves.

• We implemented a Split Inference prototype for the
MobileNet V1 model on a RISC-V multi-enclave TEE
framework, Keystone.

• We run a series of experiments and analyzed the perfor-
mance overhead. The result showed that Split Inference
incurred smaller inference overhead comparing with latest
TEE based solutions [32].

The paper is organized as follows. We introduced Prelimi-
naries in Section II. We delineated the system and security
assumptions in Section III. We introduced the system design
in Section IV. We discussed the security in Section V. We
described the implementation in Section VI. We presented
the experiments in Section VII. We discussed application of
Split Inference on other ML models and hardware platforms
in Section VIII. We discussed related works in Section IX. We
concluded the paper and the future work in Section X.

II. PRELIMINARIES

A. Trusted Execution Environment
Trusted Execution Environment (TEE) [13] provides a se-

cure area on the device to ensure the code and data loaded in-
side are protected with respect to confidentiality and integrity.
By creating a hardware-isolated environment, named enclave,
TEE ensures that information in an enclave remains inac-
cessible to unauthorized entities outside the enclave. Remote
Attestation (RA) is a security mechanism provided by TEE that
enables an application to prove its integrity to an authorized
remote party. This process involves the generation of crypto-
graphic evidence by the system’s TEE to demonstrate that the
data and software in an enclave has not been tampered with
and will be executed as expected. During remote attestation,
TEE produces a report or certificate, known as measurement,
that includes a TEE signed cryptographic hash of the attested
application in the enclave. The remote party can verify the
signature and compare the hash against known good values to
ensure the application’s integrity.

1) Multi-enclave TEE: Extension of TEE from single-
enclave to multi-enclave has been explored in recent years.
Keystone [14] is a RISC-V based multi-enclave TEE frame-
work. It allows each application, known as host app, to
create more than one isolated enclaves using RISC-V’s Phys-
ical Memory Protection (PMP) feature and deploy functions

written in C/C++ into each enclave, running as an enclave
app. Enclaves are running in both the User Mode (U-mode)
and Supervisor Mode (S-mode) of the RISC-V system and
are managed by the Security Monitor (SM), running in the
Machine Mode (M-mode). Being designed as a general TEE
framework, keystone users can customize the framework to
satisfy their needs. They can select their own set of security
primitives, including memory encryption, dynamic memory
management, cache partitioning, etc.

Keystone provides a basic remote attestation mechanism:
the verifier can verify the measurement (cryptographic hash)
of the Security Monitor (SM) and the enclave (the enclave
at initialization and the data block from the enclave of up-to
1KB) matches the expected value, therefore verifying that “the
program and data in the enclave are as expected”. This basic
remote attestation mechanism does not address the issue of
key distribution to and secure communication with enclaves,
especially when multiple enclaves are mutually distrusting
each other. In this paper, we introduced secure key distribution
and communication protocols on top of the basic remote
attestation mechanism.

B. MobileNet

MobileNet is a lightweight image classification neural net-
work, which is suitable for resource constraint environment,
such as edge devices. The MobileNet V1 [11] model in-
troduces the depthwise separable convolution and includes
the traditional DL layers such as fully connected layer and
softmax. Fig. 1 showcases the basic architecture of MobileNet
V1.

Fig. 1. Architecture of MobileNet V1

MobileNet V1 introduces width multiplier α and resolution
multiplier ρ to balance the accuracy and performance. The
width multiplier ranges from 0.25 to 1.0, with improved



accuracy while increasing performance overhead. The reso-
lution multiplier ranges from 128 to 224, indicating the input
image size, which increases from 128x128 to 224x224 pixels.
MobileNet has evolved by improving its performance, leading
to MobileNet V2 [25] and V3 [10].

III. SYSTEM AND SECURITY ASSUMPTIONS

We assume the edge device supports multi-enclave TEE,
which can provide multiple isolated enclaves that prevent
direct access or modification to the information in them,
including program and data. Data exchange with the enclave
can be done only through an edge call defined by the TEE.
The multi-enclave TEE supports the basic remote attestation
protocol, which allows the enclave to attest the program and
data loaded in the enclave. We assume the design and imple-
mentation of TEE is secure so that the attacker cannot directly
eavesdrop the data computed, stored and communicated inside
the enclave. We assume the remote attestation described above
is securely designed and implemented so that the measurement
of the content inside the enclave can be faithfully attested.

The focus of this paper is on protecting the confidentiality of
the APP data sent to and received from the MIS. We assume
that the MIS may eavesdrop on the data processed by the
model in an attempt to reconstruct the model’s input and out-
put. To achieve that, we assume the attacker can compromise
any component of the device except for the enclaves and the
APP. As a result, the attack is able to eavesdrop on the entire
model inference procedure outside of the TEE enclave.

We assume the attacker is “benign but curious”, meaning it
interests in breaching data confidentiality only, but not the data
integrity. Protecting model inference integrity is an orthogonal
problem, which will not be addressed in this paper.

IV. SYSTEM DESIGN

A. Split Inference Architecture

The architecture of Split Inference is shown in Fig. 2. Here,
we use MobileNet V1 as a concrete example. In Section
VIII-B, we show how to extend the design to other models.
The Split Inference splits the MobileNet V1 model into three
groups of layers, namely input group, middle group, and output
group, as shown in Fig. 2. The input group is deployed to
the Input Enclave, containing a convolution layer, followed
by an activation operator. The output group is deployed to the
Output Enclave, containing a fully connected layer followed
with a softmax operator. The middle group contains all other
layers between and are not protected by any enclave.

For each inference request, the APP encrypts and sends it
to the Input Enclave. The Input Enclave decrypts the received
input, processes the data through the layers in the input group,
and sends the result to the middle group, which is outside
any enclave. The output of the Input Enclave does not need
to be encrypted so that it can be quickly processed by the
middle layer. The data then is processed through layers in the
middle group and sent to the Output Enclave. The Output
Enclave receives the unencrypted output from the middle
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Fig. 2. Architecture of Split Inference in the case of MobileNetV1

group, processes the data through the output group, and sends
the encrypted output back to the APP.

In Section V, we discussed how the confidentiality of the
inference input and output is preserved. The intuition is as
follows: Without knowing the parameters of the layers in the
input group, the attacker in the middle group can hardly restore
the inference input based on the output of the first layer.
Similarly, the attacker in the middle layer can hardly restore
the inference output: the inference output will be generated
through a fully connected layer in the output enclave. Since
the attacker cannot obtain the parameters in the fully connected
layer, it lacks the information to derive the inference output.

B. Key Distribution Infrastructure and Protocol

To preserve the confidentiality of model input and output,
we need to set up two secure communication channels, i.e., a
channel between the APP and the Input Enclave, as well as a
channel between the APP and the Output Enclave. A security
channel between APP and the Input Enclave protects the
confidentiality of the model input. A secure channel between
the Output Enclave and the APP protects the confidentiality
of the model output.

By leveraging the Remote Attestation provided by the TEE,
we designed a key distribution protocol so that the APP can
negotiate a unique encryption key with the Input Enclave
and the Output Enclave, respectively. The key distribution
infrastructure is shown in Fig. 3.

To support secure key distribution, we introduced a Quote
Enclave, which stores the measurements of the Input Enclave
and the Output Enclave and maintains a Key Repository,
storing the public key of the APP. Any APP a who wants to
establish a secure channel with an enclave needs to initialize a
pair of public key, pk a and sk a. the public key pk a will be
safely deployed to the Key Repository in the Quote Enclave.

The Quote Enclave has a public key pair (pk QE, sk QE).
It publishes pk QE so that any party can send requests to the
Quote Enclave secretly by encrypting the request with pk QE.

As shown in Fig. 3, if an APP a wants to establish a security
channel with an enclave p, it first generates an asymmetric
key pair (spk a, ssk a) (In the notation, the first “s” stands
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APP a Quote Enclave QE Enclave with 
Program p

Encpk_QE(ATTEST || ID_a || ID_P || spk_a) || Signsk_a

Attestation on p, if pass, 
continue; else, terminate

Encpk_a(FORWARD || ID_a || spk_a) || Signsk_QE

Encpk_QE(PASSKEY || ID_p || ID_a || Encspk_a(K)) || Signsk_p

Encpk_a(FORWARD || ID_p || Encspk_a(K)) || Signsk_QE

EncK(Data)

Fig. 4. Key Distribution Protocol

for “Session”). Then, it issues a request to the Quote Enclave
(as shown in step 1 in Fig. 3), indicating: “perform a remote
attestation on p on behalf of APP a; if pass, ask p to contact
APP a using public key spk a”. Note that this request is
encrypted with pk QE and signed by the sk a to preserve
the request’s confidentiality and integrity. The Quote Enclave,
once receiving the request, performs remote attestation on p
(as shown in step 2). If the attestation is passed, it forwards
spk a to the receiver enclave (step 3). The enclave p then
proposes a symmetric encryption key K (step 4) and sends K
to APP a through QE using the encryption key spk a (step
5). Upon the APP decrypting and restoring K, the APP a and
p start to exchange data using encryption key K (step 6). Fig.
4 shows the detailed protocol based on the steps described
above. Please note that Fig. 3 is a high-level description of
the protocol in Fig. 4. As a result, it skipped the participation
of QE displayed in Fig. 4. In the protocol, we introduce three
instructions in the messages, including ATTEST, FORWARD
and PASSKEY. To protect message confidentiality, integrity,
and authenticity, each message is encrypted with the receiver’s
public key and signed with the sender’s secret key.

V. SECURITY ANALYSIS

In this section, we show that Split Inference has raised
the bar for the attacker to compromise the input and output
confidentiality for the MobileNet V1 model. The model input
and output confidentiality also applies to other deep learning
models for the same reason.

Firstly, the data transmitted between the APP and the en-
clave cannot be leaked due to the encryption using symmetric
key K generated through key distribution protocol introduced
in Section IV-B.

Secondly, the confidentiality of model input and output is
preserved in the input and output enclave. Our design makes
the input and output enclave contain simple and standardized
operations. The input enclave contains a convolution layer and
an activation operator. The output enclave contains a fully con-
nected layer and a softmax operator. By carefully evaluating
the standardized implementations, data leakage logic can be
eliminated. The remote attestation on the two enclaves ensures
that those layers will not be tamperred when deployed and
executed in the enclave. Therefore, data leakage in the input
and output enclaves is prevented.

Finally, it is difficulty for the attacker to restore input and
output based on the data in the intermediate layers. Mathemat-
ically, the operators in the input enclave can be represented as
O = ϕ(I ◦ k + b), where O and I are the layer output and
input, respectively, k is the convolution kernel, b is the bias
of the model, and ϕ is the activation function. The attacker’s
goal is to restore I based on the observed O. However, without
knowing ϕ, k, and b, it is infeasible to accurately restore I .
Similarly, the operator in the output enclave can be represented
as O = softmax(ϕ(w ∗ I + b)), where w and b are the
weights and bias of the fully connected layer, I is the input
of the Output Enclave. ϕ is the activation function of the
fully connected layer and the softmax function returns the
probabilistic scores for each label, i.e., the Inference Output.
The attacker’s goal is to recover O based on I . which is
mathematical challenging without knowing w and b.

In practice, the attacker might try to restore model input
and output through data reconstruction attacks [7] [30] [8]
or label inference attacks [16]. On the other hand, existing
countermeasures [21] [23] [29] [33] against these attacks can
be applied to the Split Inference framework to defeat those
attacks.

The design of Keystone thwarts several major TEE-based
side-channel attacks, including cache side-channel, control
side-channel, etc [14]. Although the timing side-channel is not
addressed by Keystone, in which the attacker infers the input
and output group execution time on the eapp and hopefully
infers some data information in the enclaves, we can eliminate
this side-channel by uniforming the inference time of the input
and output group.

VI. IMPLEMENTATION

We implemented a prototype system on Keystone, an open-
source RISC-V based multi-enclave TEE framework. The
entire MobileNet V1 model was implemented in C++. In



our prototype, we created two enclaves, running as the In-
put Enclave, Output Enclave. We implemented the secure
communication protocol by using basic remote attestation
service supported by the Keystone. Due to the limited library
support in RISC-V, we try to make the implementation self-
contained, meaning not relying on external library. To follow
that principle, we integrate lightweight encryption library, such
as tiny-AES-c for encryption and hardcode model parameters
instead of having the enclave reading the model from a stored
file. Doing so can also reduce the performance overhead by
avoiding file I/O. It also improved the performance by avoiding
interacting with external libraries or files outside the enclave.
A drawback is that such an approach makes the code included
in the enclave larger. Fortunately, the generated executable can
fit in the enclaves. For the MobileNet V1 implementation,
with the resolution multiplier ρ as 224x224 and the width
multiplier α as 0.25, the size of generated keystone .ke file is
13.1 MB; with α as 0.5, the size of the generated .ke file
is 20.5 MB; with α as 0.7, the size of the generated .ke
file is 29.5 MB. For information encryption, we use AES-
128CBC for symmetric encryption (secure data transmission)
and RSA for asymmetric encryption (key distribution and
secure communication channel set up).

VII. EXPERIMENTS

We measured the performance overhead introduced by the
Split Inference through experiments. The experiments were
run on a Google Cloud Platform e2-standard-4 instance, which
has 4 vCPUs and 16 GB of memory. The VM is running
Ubuntu-22.04.5 LTS OS, on which we launched the prototype
on a QEMU emulator that emulates a RISC-V hardware
environment. We set the emulated RISC-V machine’s memory
to 2 GB and the vCPU number to 1 to simulate the resource-
restricted setting. In the prototype, the memory size for the
Input Enclave and the Output Enclave are set to 64MB and
4MB, respectively.

We run the performance experiments to measure the exe-
cution time for different width multiplier α, ranging from 0.7
to 0.25. We set the resolution multiplier ρ to 224×224. We
compared the performance of Split Inference on the Keystone
with a baseline model, the original MobileNet V1 model de-
ployed to the Keystone but without using any enclaves. Table
I shows the time it takes to complete one inference request
under different α. It includes the time of enclave and model
layer initialization, image reading from APP, key distribution
to the enclaves and communication channel set up. The result
showed that the execution overhead for completing the entire
procedure ranges from 101% to 516%, when width multiplier
changes from 0.7 to 0.25. Notice that the initializations of
enclaves and model layers, as well as the execution of key
distribution and secure communication protocol happened only
once, even if the same model is repeatedly used for inference
tasks. That means the overhead of model inference only should
be lower.

To understand the overhead details, we further investigated
the composition of the time on the Split Inference and on

TABLE I
EXECUTION TIME FOR ONE INFERENCE ON MOBILENET V1

Width Multiplier α Split Inference Baseline Execution Overhead
0.7 71.1034 35.2980 1.0144
0.5 50.6748 18.5858 1.7265
0.25 35.0644 5.6916 5.1607

baseline and present the time breakdown in table II, III, and IV.
For each setting, we broke down the tasks for Input Enclave,
middle group (executed on the host), and Output Enclave. Each
enclave has tasks including Enclave Init, Remote Attestation
(key distribution & secure communication channel set up),
Model Layer Init, Layer Inference, Data Transmission (send
the group output out of the enclave. For the Output Enclave,
it also includes layer output encryption), and Enclave Destroy.
For the host, it includes tasks of Host Init (read in the
image), Input Transmission (including encrypting the image
and sending it to the Input Enclave), Model Layer Init,
Layer Inference (for middle group), and Data Transmission
(sending middle group output to the Output Enclave). The
Layer Inference time includes the time takes to receive output
from the previous group/APP, decrypt the data if needed, and
perform the inference. For baseline, we broke down the time
to Model Init and Model Inference, as shown in the last two
rows of each table. The second right-most column recorded the
total execution time in different settings. The same inference
task is executed five times and the average time for each task
is collected and presented in the table.

In a practical scenario, MIS will provide inference service
for multiple requests. In this setting, Input Transmission, Layer
Inference, and Data Transmission will take place for each
inference request in the Split Inference, while other tasks will
be executed only once when the APP and MIS is initialized.
In comparison, for Baseline, only model inference will be
executed every time when an inference request occurred. We
highlighted the tasks executed in each inference request with
yellow box in Table II, III, and IV. For each inference, each

task depends on the result of its predecessor task. Therefore,
all the highlighted tasks are executed sequentially, forming the
actual execution time for each inference. Based on the above
reason, we define the inference overhead as

(TInputTransmission +
∑

TLayerInference+∑
TDataTransmission)/TModelInference − 1

Notice the TModelInference is the Model Inference time for
Baseline;

∑
TLayerInference and

∑
TDataTransmission are

the summation of the corresponding time on three groups.
According to the data in Table II, III, and IV, the infer-
ence overheads of Split Inference for 0.7 MobileNet-224, 0.5
MobileNet-224, and 0.25 MobileNet-224 are 71%, 133%, and
430%, respectively.

By analyzing the times, we observed that the model infer-
ence time in baseline is almost the same as the layer inference
time on the intermediate layer. The layer inference times on
the input and output enclaves are trivial. We also noticed



TABLE II
EXECUTION TIME BREAKDOWN ON AN IMAGE INFERENCE USING 0.7 MOBILENET-224

Environment Task Input Enclave Host (Intermediate Layer) Output Enclave Total Inference Overhead

Split Inference

Host Init - 10.8178 -

71.1034
71.2805%

Input Transmission - 21.5018 -
Enclave Init 9.6748 - 20.3394
Remote Attestation 0.0948 - 0.0062
Model Layer Init 0.8560 18.1108 0.0602
Layer Inference 0.0038 37.5590 0.0092

Data Transmission 0.2660 0.0064 0.0174
Enclave Destroy 0.0508 - 0.0026

Baseline Model Init 0.5877 35.2980
Model Inference 34.6587

TABLE III
EXECUTION TIME BREAKDOWN ON AN IMAGE INFERENCE USING 0.5 MOBILENET-224

Environment Task Input Enclave Host (Intermediate Layer) Output Enclave Total Inference Overhead

Split Inference

Host Init - 7.6098 -

50.6748
133.5292%

Input Transmission - 23.2750 -
Enclave Init 6.4866 - 11.0028
Remote Attestation 0.0908 - 0.0070
Model Layer Init 0.8378 9.2450 0.0404
Layer Inference 0.0050 18.7478 0.0082

Data Transmission 0.1926 0.0066 0.0322
Enclave Destroy 0.0042 - 0.0030

Baseline Model Init 0.5354 18.5858
Model Inference 18.0994

TABLE IV
EXECUTION TIME BREAKDOWN ON AN IMAGE INFERENCE USING 0.25 MOBILENET-224

Environment Task Input Enclave Host (Intermediate Layer) Output Enclave Total Inference Overhead

Split Inference

Host Init - 6.5782 -

35.0644
430.1635%

Input Transmission - 22.3354 -
Enclave Init 6.0074 - 9.1850
Remote Attestation 0.0468 - 0.0070
Model Layer Init 0.4232 5.9534 0.0258
Layer Inference 0.0156 5.1402 0.0072

Data Transmission 0.1040 0.0074 0.0430
Enclave Destroy 0.0026 - 0.0022

Baseline Model Init 0.4536 5.6916
Model Inference 5.2159

that in each setting, Input Transmission takes a noticeable
amount of time, while the Data Transmission times are trivial
when compared with the Input Transmission time. Based on
the above observation, we have the following conclusion: To
process one inference request, the model inference time on
Split Inference is almost the same as that time for Baseline,
and the major extra overhead occurred in Input Transmission.

Based on the above conclusion, we can explain the reason
why a smaller model has a higher overhead. It is because the
Input Transmission time is decided by the model input size,
which is unchanged. On the other hand, the model inference
time reduces with a smaller width multiplier. As a result,
the inference overhead increases when the width multiplier
decreases.

VIII. DISCUSSION

A. Supporting Hardware

The Split Inference framework can be implemented on most
hardware platforms that support multi-enclave TEE, including
Intel Skylake or newer architecture supporting SGX [5] [4],
ARMv9 architecture supporting CCA [15] [1], and RISC-
V architecture supporting Keystone, such as SiFive HiFive
Unleashed [2] and Unmatched [3], etc.

B. Supporting Models

Split Inference can be applied to other deep learning models
that have multiple layers. Table V listed the first and last
group of layers of several on-device deep learning models. The
general trend is that the first group uses standard convolutions
with strides and pooling to rapidly reduce input dimensions
while learning basic features, while the last group focus on



TABLE V
THE FIRST AND LAST GROUP OF LAYERS FOR DIFFERENT ON-DEVICE DEEP LEARNING MODELS.

Model First Group Last Group
MobileNet V2
[25] & V3 [10]

Standard 3×3 convolution with stride 2, followed
with batch normalization and ReLU activation.

1×1 convolution that aggregates features, followed with global average
pooling and a classification head (dense layer)

EfficientNet /
Lite [27]

Small, efficient 3×3 convolution with stride 2 to
capture low-level features

1×1 convolution to expand the channel dimension, followed with
global average pooling, then a dense layer for final classification

SqueezeNet [12] Larger convolution (commonly 7×7) to capture broad
features, followed by a max pooling layer

1×1 convolution that compresses the feature maps to the number of
classes, followed with global average pooling to yield class scores

ShuffleNet [31] 3×3 convolution with batch normalization and acti-
vation, followed with a max pooling operation for
early downsampling

1×1 pointwise convolution to mix channel information, followed with
global average pooling followed by a fully connected layer

Tiny YOLO [24]
(Detection)

Efficient convolutional layer (commonly 3×3) to ex-
tract initial features with appropriate downsampling

Convolutional layer that outputs a grid of predictions (bounding box
coordinates, objectness scores, and class probabilities)

compressing the spatial information through global pooling (or
similar techniques) so that the final classification or detection
head can operate on a compact feature representation. Since
the first and last group are typically simple and standardized,
Split Inference can be applied so that they will be deployed to
sperate enclaves, which protects the model input and output
confidentiality. The same principle can be applied to other
more complex and advanced on-device models, such as on-
device transformer MobileViT [18] and on-device LLMs(or
known as SLM) [17] to protect data confidentiality of the APPs
that use those models.

C. Application

The Split Inference can be applied on various edge com-
puting settings, such as smart devices, automomous systems,
robotics, etc., to prevent data leakage from malicious or
vulnerable on-device deep learning models. For each model,
we can deploy the first group of layers to the Input Enclave
and the last group of layers to the Output Enclave, and keep
the remaining layers outside of the enclave. The APP that uses
the model only needs to establish a secure channel with the
Input and Output Enclave, respectively, using the protocol in
Section IV-B. After that, the APP can send inference requests
and receive inference responses through the secure channels.

IX. RELATED WORKS

A. Multi-enclave TEE

The exploration of multi-enclave TEE is emerging as single-
enclave TEE failed to satisfy the need of multi-module ma-
chine learning system [28]. Existing implementations, such
as Keystone [14] and Multizone [22], do not offer complete
security solutions. Multizone, a proprietary multi-enclave so-
lution, can only support up to four isolated enclaves, and does
not support remote attestation. Keystone does not have enclave
number limitation and provides basic remote attestation. How-
ever, it does not directly support key management and secure
communication issues.

B. Split Learning

Split learning [9] is a distributed machine learning frame-
work that partitions a neural network into the client model,
which runs on the device and the server model, which runs
on the server. In this way, client and server collaborate to

complete training and inference. The client locally computes
the first few layers, and the server computes rest of the
layers. Pasquini et al. [20] first studied security issues of
split learning, introduced the feature-space hijacking attack, in
which the attacker server can direct the client models towards
its own malicious goal, independent of the actual classification
task. Following this trend, various data reconstruction [8] and
label inference attacks [16] were proposed targeting on split
learning.

Different from split learning, our Split Inference model only
focuses on model inference. The model is pretrained before
deployed to the device for model inference services. Therefore,
the model is immutable during the inference. Malicious server
will not have a chance to hijack the training and mislead the
model.

There exists some attacks do not rely on the training phase:
Erdoğan et al. [7] presented UnSplit to inverse a model input
based on the intermediate data. It leverages deep learning
methods to restore simple input such as images from the
MNist, F-MNist, and Cipher-10 dataset. However, UnSplit is
ineffective in restoring complex model input. [30] proposed
GAN-based data reconstruction attack method, showing an
improved attack performance.

On the other hand, defense against the above attacks were
presented. Erdoğan et al. [6] proposed SplitGuard, which
detects and mitigates training-hijack attacks listed in [20].
Various different methods were proposed to defeat the data
reconstruction and label inference attacks through differential
privacy [21], HashVFL [23], Patch Shuffle [29], Potential
Energy Loss [33], etc. These methods are all compatible with
our Split Inference framework to enhance the defense.

C. Model Data Protection

To protect model data confidentiality, many works [19],
[26], [32] protect minority but critical layers of the model
using an TEE enclave, but protect majority remaining layers
through linear transformations. These works focus on one
enclave only and did not explore multi-enclave architecture.
The state-of-the-art solution in this direction claimed that its
inference overhead ranges between 142% (VGG16 BN) and
577% (AlexNet) at the best case (See Table 6 of [32]), which is
higher than our solution (71% to 430% of inference overhead).



X. CONCLUSION AND FUTURE WORK

In this paper, we introduced the Split Inference architecture
that can protect data confidentiality in untrusted models on
the on-device machine learning system. We achieved the goal
through multi-enclave TEE and implemented a prototype for
MobileNet model on Keystone, a RISC-V based multi-enclave
TEE. We tested and measured the performance against the
baseline that does not use enclaves. Experiments showed that
Split Inference incurred 71% to 430% of inference overhead,
which outperforms existing state-of-the-art work that uses
TEE protect on-device model data. Our future work includes
to expand the Split Inference framework to other on-device
models and implement the framework on hardware devices.
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